Amérique du Sud Novembre 2010

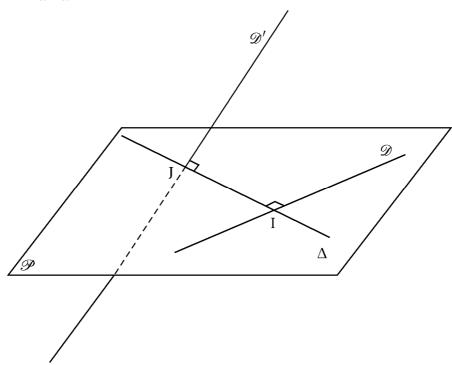
Exercice 1 Commun à tous les candidats 5 points

On admet que si \mathscr{D} et \mathscr{D} ' sont deux droites non coplanaires, il existe une unique droite Δ perpendiculaire à \mathscr{D} et \mathscr{D} '. Si Δ coupe \mathscr{D} en le point I et \mathscr{D} ' en le point I, la distance IJ est appelée distance de \mathscr{D} et \mathscr{D} '.

L'espace est rapporté au repère orthonormal (O; \vec{i} , \vec{j} , \vec{k}).

On note \mathcal{D} la droite des abscisses et \mathcal{D}' , la droite de représentation paramétrique $\begin{cases} x = -t \\ y = 3 + 3t, t \in \mathbb{R} \\ z = 1 - t \end{cases}$

- 1. Justifier que les droites \mathcal{D} et \mathcal{D} 'ne sont pas coplanaires.
- 2. On considère la droite Δ perpendiculaire commune à \mathcal{D} et \mathcal{D}' . Prouver qu'il existe deux réels b et c tels que le vecteur $\vec{w} = \vec{b} \cdot \vec{j} + c \cdot \vec{k}$ soit un vecteur directeur de Δ .
- **3.** a. Vérifier que le plan \mathscr{P} d'équation : -3y + z = 0 est un plan contenant la droite \mathscr{D} .
- **b.** Déterminer les coordonnées du point d'intersection J de la droite \mathcal{D} ét du plan \mathcal{P} .
- c. Justifier que la droite passant par J, de vecteur directeur \overrightarrow{w} est sécante à \mathscr{D} en un point I et qu'elle est la perpendiculaire commune à \mathscr{D} et \mathscr{D} .
- d. En déduire la distance de 2 à 2 '.



Exercice 2 Candidats n'ayant pas suivi l'enseignement de spécialité 5 points

Le plan est muni d'un repère orthonormal direct (O; \vec{u} , \vec{v}).

Soit A, B et P les points d'affixes respectives a = 5 + 5 i, b = 5 - 5 i et p = 10.

On considère un point M, distinct de O, d'affixe z.

On note U le point d'affixe u, image du point M par la rotation R_A de centre A et d'angle de mesure $-\frac{\pi}{2}$.

On note T le point d'affixe t, image du point M par la rotation R_B de centre B et d'angle de mesure $\frac{\pi}{2}$

Soit D le symétrique du point M par rapport à O.

- 1. Démontrer que l'affixe du point U est u = i (10 z); exprimer en fonction de z l'affixe du point T puis justifier que le quadrilatère MUDT est un parallélogramme de centre O.
- 2. Déterminer l'ensemble Γ des points M d'affixe z tels que : z = -5 z z = 0.

Justifier que le quadrilatère OAPB est inscrit dans Γ .

- 3. On suppose que le point M est distinct de O, A et P. Les points O, M et U sont donc distincts deux à deux.
- a. Démontrer que les points O, M et U sont alignés si et seulement si $\frac{u}{z} = \frac{u}{z}$.
- **b.** Démontrer que les points O, M et U sont alignés si et seulement si M appartient à Γ .
- **4.** Déterminer l'ensemble des points M du plan tels que OMU soit un triangle isocèle en O. Quelle est dans ce cas la nature du quadrilatère MUDT ?

5. Déterminer l'ensemble des nombres complexes z tels que $\frac{u}{z}$ soit un imaginaire pur. En déduire la nature du quadrilatère

MUDT dans le cas où M est un point de la droite (OP) privée de O et P.

Prouver finalement qu'il existe une unique position du point M tel que MUDT soit un carré.

Exercice 2 Candidats ayant suivi l'enseignement de spécialité 5 points

Pour tout entier naturel *n* supérieur ou égal à 2, on pose $A(n) = n^4 + 1$.

L'objet de l'exercice est l'étude des diviseurs premiers de A(n).

- 1. Quelques résultats
 - a. Étudier la parité de l'entier A(11).
 - **b.** Montrer que, quel que soit l'entier n, A(n) n'est pas un multiple de 3.
 - c. Montrer que tout entier d diviseur de A(n) est premier avec n.
 - **d.** Montrer que, pour tout entier d diviseur de A(n): $n^8 \equiv 1 \mod d$.

2. Recherche de critères

Soit d un diviseur de A(n). On note s le plus petit des entiers naturels non nuls k tels que $n^k \equiv 1 \mod d$.

- a. Soit k un tel entier. En utilisant la division euclidienne de k par s, montrer que s divise k.
- **b.** En déduire que s est un diviseur de 8.
- c. Montrer que si, de plus, d est premier, alors s est un diviseur de d-1. On pourra utiliser le petit théorème de Fermat.

3. Recherche des diviseurs premiers de A(n) dans le cas où n est un entier pair.

Soit p un diviseur premier de A(n). En examinant successivement les cas s = 1, s = 2 puis s = 4, conclure que p est congru à 1 modulo 8.

4. Dans cette question toute trace de recherche, même incomplète, sera prise en compte dans l'évaluation.

Appliquer ce qui précède à la recherche des diviseurs premiers de A(12).

Indication : la liste des nombres premiers congrus à 1 modulo 8 débute par 17, 41, 73, 89, 97, 113, 137, ...

Exercice 3 Commun à tous les candidats 5 points

Un internaute souhaite faire un achat par l'intermédiaire d'Internet. Quatre sites de vente, un français, un allemand, un canadien et un indien présentent le matériel qu'il souhaite acquérir. L'expérience a montré que la probabilité qu'il utilise chacun de ces sites vérifie les conditions suivantes (les initiales des pays désignent les évènements « l'achat s'effectue dans le pays »):

$$P(F) = P(A),$$
 $P(F) = \frac{1}{2}P(C)$ et $P(C) = P(I).$

- 1. Calculer les quatre probabilités P(F), P(A), P(C) et P(I).
- **2.** Sur chacun des quatre sites, l'internaute peut acheter un supplément pour son matériel. Ses expériences précédentes conduisent à formuler ainsi les probabilités conditionnelles de cet évènement, noté S :

$$P_{F}(S) = 0.2$$
; $P_{A}(S) = 0.5$; $P_{C}(S) = 0.1$; $P_{I}(S) = 0.4$

- a. Déterminer $P(S \cap A)$.
- **b.** Montrer que $p(S) = \frac{17}{60}$.
- c. L'internaute a finalement acheté un supplément. Déterminer la probabilité qu'il l'ait acheté sur le site canadien.
- 3. Sur 1 000 internautes ayant acheté ce matériel, on a établi la statistique suivante :

	Sites européens	Site canadien	Site indien
Effectif d'acheteurs	335	310	355

a. On note respectivement f_1, f_2 et f_3 les fréquences associées aux effectifs précédents. On pose : $d^2 = \sum_{k=3}^{k=3} \left(f_k - \frac{1}{3} \right)^2$.

Calculer d^2 puis 1000 d^2 .

b. On simule 3 000 fois l'expérience consistant à tirer un nombre au hasard parmi $\{1; 2; 3\}$ avec équiprobabilité. Pour chacune de ces simulations on obtient une valeur de $1000 d^2$. Voici les résultats :

Minimum	Premier décile	Premier quartile	Médiane	Troisième quartile	Neuvième décile	Maximum
0,000 5	0,076 3	0,211 1	0,488 45	0,940 1	1,510 4	5,925 6

Au risque 10%, peut-on considérer que le choix d'un site européen, nord-américain ou asiatique se fait de manière équiprobable ?

Exercice 4 Commun à tous les candidats 5 points

Le but de l'exercice est de donner un encadrement du nombre I défini par : $\int_0^1 \frac{x^2 e^x}{1+x} dx.$

Soit f la fonction définie sur [0; 1] par $f(x) = \frac{e^x}{1+x}$.

- 1. Étudier les variations de f sur [0; 1].
- 2. On pose, pour tout entier naturel $S_n = \sum_{k=0}^n f\left(\frac{k}{5}\right)$.

a. Justifier que pour tout entier
$$k$$
 compris entre 0 et 4 , on $a: \frac{1}{5} f\left(\frac{k}{5}\right) \le \int_{\frac{k}{5}}^{\frac{k+1}{5}} \frac{e^x}{1+x} dx \le \frac{1}{5} f\left(\frac{k+1}{5}\right)$

Interpréter graphiquement à l'aide de rectangles les inégalités précédentes.

b. En déduire que :
$$\frac{1}{5} S_4 \le \int_0^1 \frac{e^x}{1+x} dx \le \frac{1}{5} (S_5 - 1).$$

c. Donner des valeurs approchées à 10^{-4} près de S $_4$ et de S $_5$ respectivement.

En déduire l'encadrement : $1,091 \le \int_0^1 \frac{e^x}{1+x} dx \le 1,164$.

- **3.** *a*. Démontrer que pour tout réel *x* de [0 ; 1], on a : $\frac{1}{1+x} = 1 x + \frac{x^2}{1+x}$.
- **b.** Justifier l'égalité $\int_0^1 \frac{e^x}{1+x} dx = \int_0^1 (1-x) e^x dx + I$
- c. Calculer $\int_{0}^{1} (1-x) e^{x} dx$
- **d.** En déduire un encadrement de $I = \int_0^1 \frac{x^2 e^x}{1+x} dx$ d'amplitude strictement inférieure à 10^{-1} .

CORRECTION

Exercice 1 Commun à tous les candidats 5 points

Soit M le point d'intersection de \mathcal{D} et \mathcal{D} , alors $M \in \mathcal{D}$ donc a pour coordonnées (x; 0; 0)

 $M \in \mathcal{D}'$, donc il existe un réel t tel que $\begin{cases} x = -t \\ y = 3 + 3t \text{ donc on doit avoir } \begin{cases} x = -t \\ 0 = 3 + 3t \Leftrightarrow \end{cases} \begin{cases} x = -t \\ t = -1 \end{cases}$

ceci est impossible donc les droites \mathcal{D} et \mathcal{D} 'n'ont pas de point d'intersection donc sont non coplanaires.

Un vecteur directeur de Δ est de la forme $\vec{w} = a\vec{i} + b\vec{j} + c\vec{k}$, il est orthogonal à \vec{i} vecteur directeur de Δ donc $\vec{w} \cdot \vec{i} = 0$ soit a=0 donc il existe deux réels b et c tels que le vecteur $\vec{w} = \vec{b} \cdot \vec{j} + c \cdot \vec{k}$ soit un vecteur directeur de Δ .

Un vecteur directeur de Δ est de la forme $\vec{w} = \vec{b} \cdot \vec{j} + c \cdot \vec{k}$, il est orthogonal à \vec{u} (-1; 3; -1) vecteur directeur de \mathcal{D} donc $\vec{w} \cdot \vec{u} = 0$ soit 3b-c=0 donc c=3b. Un vecteur directeur de Δ est le vecteur $\vec{w}=\vec{i}+3\vec{k}$

- 3. a. Tout point M de \mathcal{D} a pour coordonnées (x; 0; 0), ses coordonnées vérifient -3y + z = 0 donc tout point M de la droite \mathcal{D} appartient au plan \mathscr{P} . Le plan \mathscr{P} d'équation : -3y + z = 0 est un plan contenant la droite \mathscr{D} .
- $J \in \mathcal{D}'$, donc il existe un réel t tel que $\begin{cases} x = -t \\ y = 3 + 3t \text{, J appartient au plan} \mathcal{P} \text{ donc ses coordonnées vérifient } -3y + z = 0 \\ z = 1 t \end{cases}$

donc -3 (3 + 3 t) + 1 - t = 0 soit -8 - 10 t = 0 donc t = -0.8 donc J a pour coordonnées $\begin{cases} x = 0.8 \\ y = 3 - 3 \times 0.8 \end{cases}$

soit J a pour coordonnées (0,8;0,6;1,8).

La droite δ passant par J, de vecteur directeur \overrightarrow{w} a pour représentation paramétrique $\begin{cases} x = 0.8 \\ y = 0.6 + t \text{ avec } t \in \mathbb{R}, \\ z = 1.8 + 3t \end{cases}$

 \vec{w} n'est pas colinéaire à \vec{i} donc cette droite n'est pas parallèle à \mathcal{D} donc lui est sécante.

Si t = -0.6, le point de δ a pour coordonnées (0.8; 0; 0) donc appartient à

La droite δ passant par J, de vecteur directeur \overline{w} est sécante à \mathcal{D} en un point I(0,8;0;0)

 \vec{w} est orthogonal à \vec{i} et à \vec{u} donc δ est perpendiculaire à \mathcal{D} en I et à \mathcal{D} 'en J donc δ est la perpendiculaire commune à \mathcal{D} et \mathcal{D} '.

La distance de \mathscr{D} à \mathscr{D} 'est égale à IJ, IJ ² = $(0.8 - 0.8)^2 + 0.6^2 + 1.8^2 = 3.6$ d.

Exercice 2 Candidats n'ayant pas suivi l'enseignement de spécialité 5 points

La rotation R_A de centre A et d'angle de mesure $-\frac{\pi}{2}$ a pour expression complexe $z' - a = e^{-i\frac{\pi}{2}} (z - a)$ soit z' - a = -i(z - a) donc $z' = -iz + a(1 + i) = -iz + 5(1 + i)^2$ or $(1 + i)^2 = 2i$ donc z' = i(10 - z)

U image du point M par la rotation R_A de centre A et d'angle de mesure $-\frac{\pi}{2}$ a pour affixe u = i (10 - z)

La rotation R_B de centre B et d'angle de mesure $\frac{\pi}{2}$ a pour expression complexe $z' - b = e^{i\frac{\pi}{2}}(z - b)$ soit z' - b = i(z - b) donc $z' = iz + b(1 - i) = iz + 5(1 - i)^2$ or $(1 - i)^2 = -2i$ donc z' = i(z - 10)

l'affixe du point T est t = i (z - 10)

D est le symétrique du point M par rapport à O donc O est le milieu de [MD].

t = i (z - 10) = -u donc U est le symétrique du point T par rapport à O donc O est le milieu de [TU], les diagonales [MD] et [TU] du quadrilatère MUDT ont même milieu O donc le quadrilatère MUDT est un parallélogramme de centre O.

Soit z = x + i y avec x et y réels, z = -5 z = -5 $z = 0 \Leftrightarrow z = -5$ $(z + z) = 0 \Leftrightarrow x^2 + y^2 - 10$ $x = 0 \Leftrightarrow (x - 5)^2 + y^2 = 25$ 2.

donc Γ est le cercle de centre Ω (5 ; 0) de rayon 5.

 Ω est le milieu de [OP] et Ω O = Ω P = 5 donc O et P appartiennent à Γ

$$\Omega A^2 = (5-5)^2 + 5^2 = 25 \text{ donc } A \in \Gamma$$

$$\Omega A^2 = (5-5)^2 + 5^2 = 25 \text{ donc } A \in \Gamma$$

 $\Omega B^2 = (5-5)^2 + (-5)^2 = 25 \text{ donc } B \in \Gamma$

Le quadrilatère OAPB est inscrit dans Γ .

- **3. a.** les points O, M et U sont alignés si et seulement si il existe un réel k tel que $\overrightarrow{OU} = k \overrightarrow{OM} \Leftrightarrow u = k z \Leftrightarrow \frac{u}{z} \in \mathbb{R} \Leftrightarrow \frac{u}{z} = \frac{u}{z}$
- **b.** $u = i (10 z) \text{ donc } \bar{u} = -i (10 \bar{z})$

les points O, M et U sont alignés si et seulement si $\frac{u}{z} = \frac{u}{z} \Leftrightarrow u \ \overline{z} = \overline{u} \ z \Leftrightarrow i \ (10-z) \ \overline{z} = -i \ (10-\overline{z}) \ z \Leftrightarrow (10-z) \ \overline{z} = -i \ (10-\overline{z}) \ z \Leftrightarrow (10-z) \ \overline{z} = -i \ (10-\overline{z}) \ z \Leftrightarrow (10-z) \ \overline{z} = -i \ (10-\overline{z}) \ z \Leftrightarrow (10-z) \ \overline{z} = -i \ (10-\overline{z}) \ z \Leftrightarrow (10-z) \ \overline{z} = -i \ (10-\overline{z}) \ z \Leftrightarrow (10-z) \ \overline{z} = -i \ (10-\overline{z}) \ z \Leftrightarrow (10-z) \ \overline{z} = -i \ (10-z)$

4. Le triangle OMU est un triangle isocèle en O \Leftrightarrow OM = OU \Leftrightarrow $|z| = |i(10 - z)| \Leftrightarrow |z| = |-i(z - 10)| \Leftrightarrow |z| = |-i||(z - 10)| \Leftrightarrow |z| = |z - 10| \Leftrightarrow OM = OP \Leftrightarrow M$ décrit la médiatrice de [OP]

le quadrilatère MUDT est un parallélogramme de centre O qui a les diagonales de même longueurs (MD = 2 OM = 2 OU = UT) donc est un rectangle.

5. $\frac{u}{z}$ est un imaginaire pur $\Leftrightarrow \frac{u}{z} = -\frac{\overline{u}}{z} \Leftrightarrow u \overline{z} = -\overline{u} z \Leftrightarrow i (10-z) \overline{z} = i (10-\overline{z}) z \Leftrightarrow (10-z) \overline{z} = (10-\overline{z}) z$ $\Leftrightarrow (10-z) \overline{z} - (10-\overline{z}) = 0 \Leftrightarrow 10 \overline{z} - z \overline{z} - 10 z + \overline{z} z = 0 \Leftrightarrow 10 \overline{z} + 10 z = 0 \Leftrightarrow z + \overline{z} = 0 \Leftrightarrow x = 0$

 $M \neq O$ et $M \neq P$ donc $\frac{u}{z}$ est un imaginaire pur \Leftrightarrow M appartient à $(O; \vec{v})$ privé de O et P

Si M est un point de la droite (OP) privée de O et P alors $\frac{u}{z}$ est un imaginaire pur donc l'angle $(\overrightarrow{OM}, \overrightarrow{OU})$ est droit donc les diagonales du quadrilatère MUDT sont alors perpendiculaires entre elles.

Si M est un point de la droite (OP) privée de O et P, alors le quadrilatère MUDT est un parallélogramme de centre O qui a ses diagonales perpendiculaires entre elles donc est un losange.

MUDT est un carré \Leftrightarrow MUDT est un rectangle et un losange \Leftrightarrow M appartient la médiatrice de [OP] et M est un point de la droite (OP) privée de O et P \Leftrightarrow M = Ω de coordonnées (5 ; 0)

Exercice 2 Candidats ayant suivi l'enseignement de spécialité 5 points

1. a. $A(11) = 11^4 + 1$ or $11 \equiv 1 \mod 2$ donc $11^4 \equiv 1 \mod 2$ donc $11^4 + 1 \equiv 0 \mod 2$, donc A(11) est pair.

b. Soit n un entier naturel, alors soit $n \equiv 0 \mod 3$, et $n^4 \equiv 0 \mod 3$ donc $n^4 + 1 \equiv 1 \mod 3$ soit $n \equiv 1 \mod 3$, et $n^4 \equiv 1 \mod 3$ donc $n^4 + 1 \equiv 2 \mod 3$ soit $n \equiv 2 \mod 3$ ou encore $n \equiv -1 \mod 3$, donc $n^4 \equiv 1 \mod 3$ donc $n^4 + 1 \equiv 2 \mod 3$

dans tous les cas $n^4 + 1$ n'est pas congru à 0 modulo 3 donc quel que soit l'entier n, A(n) n'est pas un multiple de 3.

c. $A(n) - n^4 = 1$ ou encore $A(n) \times 1 + n \times (-n^3) = 1$

Soit d un diviseur de A(n) alors il existe un entier relatif q tel que A(n) = d q donc $d q + n \times (-n^3) = 1$

donc il existe deux entiers relatifs u et v (u = q et $v = -n^3$) tels que d u + n v = 1 donc d'après le théorème de Bézout, d et n sont premiers entre eux

- d. Soit d un diviseur de A(n) alors il existe un entier relatif q tel que A(n) = d q donc $n^4 + 1 = d$ q donc $n^4 + 1 \equiv 0 \mod d$ ou $n^4 \equiv -1 \mod d$ donc, pour tout entier d diviseur de A(n) : $n^8 \equiv 1 \mod d$.
- 2. a. Dans la division euclidienne de k par s, il existe deux entiers relatifs q et r tels que k = s q + r avec $0 \le r < s$ alors $n^k = n^{q \, s + r} = n^{q \, s} \times n^r$ or $n^s \equiv 1 \mod d$ donc $n^{q \, s} \equiv 1 \mod d$ donc $n^k \equiv n^r \mod d$

k est un entier naturel tel que $n^k \equiv 1 \mod d$ donc $n^s \equiv 1 \mod d$, or $0 \le r < s$ donc si $r \ne 0$ alors s ne serait pas le plus petit des entiers naturels non nuls k tels que $n^k \equiv 1 \mod d$ ce qui est impossible donc r = 0 donc s divise k.

- b. Pour tout entier d diviseur de A(n): $n^8 \equiv 1 \mod d$. 8 est un entier tel que $n^8 \equiv 1 \mod d$ donc d'après la question précédente, s est un diviseur de 8.
- c. si d est premier, alors d et n étant premiers entre eux (question 1. c.) $n^{d-1} \equiv 1 \mod d$ d'après le petit théorème de Fermat. d-1 est un entier tel que $n^{d-1} \equiv 1 \mod d$ donc d'après la question 2. a., s est un diviseur de d-1.
- 3. $A(n) = n^4 + 1$ si s = 1 alors $n \equiv 1 \mod d$ donc $n^4 \equiv 1 \mod d$ donc $A(n) \equiv 2 \mod d$ ce qui est exclu si s = 2 alors $n^2 \equiv 1 \mod d$ donc $n^8 \equiv 1 \mod d$ donc $A(n) \equiv 2 \mod d$ ce qui est exclu

si s = 4 alors $n^4 \equiv 1 \mod d$ donc $A(n) \equiv 2 \mod d$ ce qui est exclu

s est un diviseur de 8 différent de 1 ; 2 ; 4 donc s = 8

p est un nombre premier, diviseur de A(n) donc 8 est un diviseur de p-1 (question 2. c.) donc $p-1 \equiv 0 \mod 8$ soit p est congru à 1 modulo 8.

4. A(12) = 20737 donc on cherche des nombres premiers compris entre 17 et $\sqrt{20737}$ soit entre 17 et 144

les diviseurs premiers de A(12) sont congrus à 1 modulo 8, donc appartiennent à {17; 41; 73; 89; 97; 113; 137}.

En effectuant les divisions de 20 737 par 17 ; 41 ; 73 ; 89 ; 97 ; 113 ; 137, on remarque que $20 737 = 89 \times 233$, et qu'aucun des autres nombres ne divise A(12).

233 est un nombre premier donc les diviseurs premiers de A(12) sont 89 et 233.

Exercice 3 Commun à tous les candidats 5 points

1. Soit
$$p = P(A)$$
 alors $P(F) = p$ et $P(C) = 2$ $P(F) = 2$ p et $P(I) = P(C) = 2$ p $P(A) + P(C) + P(F) + P(I) = 1$ donc $P(A) = P(A) =$

2. a.
$$P(S \cap A) = P(A) \times P_A(S) = \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$$

b.
$$p(S) = P(S \cap A) + P(S \cap C) + P(S \cap F) + P(S \cap I) = \frac{1}{12} + P_C(S) \times P(C) + P_F(S) \times P(F) + P_I(S) \times P(I)$$

$$p(S) = \frac{1}{6} \times 0.5 + \frac{1}{3} \times 0.1 + \frac{1}{6} \times 0.2 + \frac{1}{3} \times 0.4 = \frac{17}{60}.$$

c.
$$p_{S}(C) = \frac{P(C \cap S)}{P(C)} = \frac{\frac{1}{30}}{\frac{1}{3}} = \frac{1}{10}$$

3. *a*.

/8								
		Sites européens	Site canadien	Site indien	Total			
	Effectif d'acheteurs	335	310	355	1000			
	fréquences	0,335	0,31	0,355	1			
	$\left(f_k - \frac{1}{3}\right)^2$	$2,77778\ 10^{-6}$	0,000544444	0,000469444	$d^2 = 0,001016667$			
	$1000 d^2$				1,016666667			

donc $1000 d^2 = 1.01666 6667$

b. $1000 d^2$ est compris entre le premier et le neuvième décile donc au risque 10%, on peut considérer que le choix d'un site européen, nord-américain ou asiatique se fait de manière équiprobable.

Exercice 4 Commun à tous les candidats 5 points

- 1. f est définie dérivable sur [0; 1] (quotient de fonctions dérivables sur [0; 1] et $f'(x) = \frac{e^x(x+1) e^x}{(x+1)^2} = \frac{x e^x}{(x+1)^2}$ $x \in [0; 1]$ donc $f'(x) \ge 0$ donc f est croissante sur [0; 1].
- **2.** a. f est croissante sur [0; 1]; pour tout entier k comprise ntre 0 et 4, $\left[\frac{k}{5}; \frac{k+1}{5}\right]$ est inclus dans [0; 1]; donc pour tout x de $\left[\frac{k}{5}; \frac{k+1}{5}\right]$, $f\left(\frac{k}{5}\right) \le f(x) \le f\left(\frac{k+1}{5}\right)$

La fonction f est continue sur $\left[\frac{k}{5}; \frac{k+1}{5}\right]$ donc $\int_{\frac{k}{5}}^{\frac{k+1}{5}} f\left(\frac{k}{5}\right) dx \le \int_{\frac{k}{5}}^{\frac{k+1}{5}} \frac{e^x}{1+x} dx \le \int_{\frac{k}{5}}^{\frac{k+1}{5}} f\left(\frac{k+1}{5}\right) dx$

soit
$$f\left(\frac{k}{5}\right) \int_{\frac{k}{5}}^{\frac{k+1}{5}} 1 \, dx \le \int_{\frac{k}{5}}^{\frac{k+1}{5}} \frac{e^x}{1+x} \, dx \le f\left(\frac{k+1}{5}\right) \int_{\frac{k}{5}}^{\frac{k+1}{5}} 1 \, dx$$

$$\int_{\frac{k}{5}}^{\frac{k+1}{5}} 1 \, \mathrm{d}x = \frac{k+1}{5} - \frac{k}{5} = \frac{1}{5} \text{ donc pour tout entier } k \text{ comprisentre } 0 \text{ et } 4, \text{ on } a : \frac{1}{5} f\left(\frac{k}{5}\right) \le \int_{\frac{k}{5}}^{\frac{k+1}{5}} \frac{\mathrm{e}^x}{1+x} \, \mathrm{d}x \le \frac{1}{5} f\left(\frac{k+1}{5}\right)$$

La fonction f est continue, positive sur [0; 1], pour tout entier k compris entre 0 et 4, $\left[\frac{k}{5}; \frac{k+1}{5}\right]$ est inclus dans [0; 1] donc

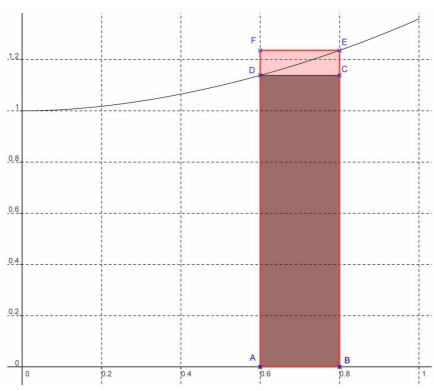
$$\int_{-\frac{k}{5}}^{\frac{k+1}{5}} \frac{e^x}{1+x} dx \text{ est l'aire du domaine limité par la courbe de } f, \text{ l'axe des abscisses, les droites d'équation } x = \frac{k}{5} \text{ est } x = \frac{k+1}{5}.$$

Soit les points A, B, C, D, E, F de coordonnées respectives

$$A\left(\frac{k}{5};0\right), B\left(\frac{k+1}{5};0\right); C\left(\frac{k+1}{5};f\left(\frac{k}{5}\right)\right); D\left(\frac{k}{5};f\left(\frac{k}{5}\right)\right); E\left(\frac{k+1}{5};f\left(\frac{k+1}{5}\right)\right); F\left(\frac{k}{5};f\left(\frac{k+1}{5}\right)\right)$$

$$\frac{1}{5}f\left(\frac{k}{5}\right)$$
 est l'aire du rectangle ABCD inscrit à l'intérieur de ce domaine

$$\frac{1}{5}f\left(\frac{k+1}{5}\right)$$
 est l'aire du rectangle ABEF contenant ce domaine.



b. En écrivant
$$\frac{1}{5} f\left(\frac{k}{5}\right) \le \int_{\frac{k}{5}}^{\frac{k+1}{5}} \frac{e^x}{1+x} dx \le \frac{1}{5} f\left(\frac{k+1}{5}\right)$$
 successivement pour k entier variant de 0 à 5

$$\frac{1}{5}f(0) \le \int_0^{\frac{1}{5}} \frac{e^x}{1+x} dx \le \frac{1}{5}f(\frac{1}{5})$$

$$\frac{1}{5}f\left(\frac{1}{5}\right) \le \int_{\frac{1}{5}}^{\frac{2}{5}} \frac{e^x}{1+x} dx \le \frac{1}{5}f\left(\frac{2}{5}\right)$$

$$\frac{1}{5}f\left(\frac{2}{5}\right) \le \int_{\frac{2}{5}}^{\frac{3}{5}} \frac{e^{x}}{1+x} dx \le \frac{1}{5}f\left(\frac{3}{5}\right)$$

$$\frac{1}{5}f\left(\frac{3}{5}\right) \le \int_{\frac{3}{5}}^{\frac{4}{5}} \frac{e^{x}}{1+x} dx \le \frac{1}{5}f\left(\frac{4}{5}\right)$$

$$\frac{1}{5}f\left(\frac{4}{5}\right) \le \int_{\frac{4}{5}}^{1} \frac{e^{x}}{1+x} dx \le \frac{1}{5}f(1)$$

En additionnant terme à terme

$$\frac{1}{5}f(0) + \frac{1}{5}f\left(\frac{1}{5}\right) + \frac{1}{5}f\left(\frac{2}{5}\right) + \frac{1}{5}f\left(\frac{3}{5}\right) + \frac{1}{5}f\left(\frac{4}{5}\right) \leq \int_{0}^{1} \frac{e^{x}}{1+x} dx \leq \frac{1}{5}f\left(\frac{1}{5}\right) + \frac{1}{5}f\left(\frac{2}{5}\right) + \frac{1}{5}f\left(\frac{3}{5}\right) + \frac{1}{5}f\left(\frac{4}{5}\right) +$$

$$S_4 = \sum_{k=3}^{4} f\left(\frac{k}{5}\right) = \frac{1}{5} f(0) + \frac{1}{5} f\left(\frac{1}{5}\right) + \frac{1}{5} f\left(\frac{2}{5}\right) + \frac{1}{5} f\left(\frac{3}{5}\right) + \frac{1}{5} f\left(\frac{4}{5}\right).$$

$$S_{5} = \sum_{k=3}^{5} f\left(\frac{k}{5}\right) = \frac{1}{5} f\left(0\right) + \frac{1}{5} f\left(\frac{1}{5}\right) + \frac{1}{5} f\left(\frac{2}{5}\right) + \frac{1}{5} f\left(\frac{3}{5}\right) + \frac{1}{5} f\left(\frac{4}{5}\right) + \frac{1}{5} f\left(1\right) donc:$$

$$\frac{1}{5}f\left(\frac{1}{5}\right) + \frac{1}{5}f\left(\frac{2}{5}\right) + \frac{1}{5}f\left(\frac{3}{5}\right) + \frac{1}{5}f\left(\frac{4}{5}\right) + \frac{1}{5}f\left(1\right) = S_5 - \frac{1}{5}f\left(0\right) = \frac{1}{5}(S_5 - 1) \text{ donc } \frac{1}{5}S_4 \le \int_0^1 \frac{e^x}{1+x} dx \le \frac{1}{5}(S_5 - 1).$$

c.
$$S_4 \approx 5{,}4587 \text{ et } S_5 \approx 6{,}8178 \text{ donc } \frac{1}{5} S_4 \approx 1{,}0917 \text{ et } \frac{1}{5} (S_5 - 1) \approx 1{,}1636$$

donc
$$1,091 \le \frac{1}{5} S_4 \le \int_0^1 \frac{e^x}{1+x} dx \le \frac{1}{5} (S_5 - 1) \le 1,164 \text{ soit } 1,091 \le \int_0^1 \frac{e^x}{1+x} dx \le 1,164$$

3. a. pour tout réel x de [0; 1],
$$1-x+\frac{x^2}{1+x}=\frac{(1-x)(1+x)+x^2}{1+x}=\frac{1}{1+x}$$
 soit : $\frac{1}{1+x}=1-x+\frac{x^2}{1+x}$

b.
$$\frac{1}{1+x} = 1 - x + \frac{x^2}{1+x} \text{ donc } \frac{e^x}{1+x} = (1-x)e^x + \frac{x^2e^x}{1+x} \text{ donc } \int_0^1 \frac{e^x}{1+x} dx = \int_0^1 (1-x)e^x dx + \int_0^1 \frac{x^2e^x}{1+x} dx$$

c. Soit
$$u'(x) = e^x$$
 alors $u(x) = e^x$

$$v(x) = 1 - x$$
 alors $v'(x) = -1$ donc $\int_0^1 (1 - x) e^x dx = \left[(1 - x) e^x \right]_0^1 - \int_0^1 - e^x dx$

$$\int_{0}^{1} (1-x) e^{x} dx = -1 + \left[e^{x}\right]_{0}^{1} \text{ soit } \int_{0}^{1} (1-x) e^{x} dx = e - 2$$

d. En déduire un encadrement de
$$I = \int_0^1 \frac{x^2 e^x}{1+x} dx$$
 d'amplitude strictement inférieure à 10^{-1} .

$$\int_{0}^{1} \frac{e^{x}}{1+x} dx = \int_{0}^{1} (1-x) e^{x} dx + I = e - 2 + I \text{ donc } I = \int_{0}^{1} \frac{e^{x}}{1+x} dx - e + 2$$

$$0.718 \le e - 2 \le 0.719 \text{ donc} - 0.719 \le 2 - e \le -0.718 \text{ soit } 1.091 - 0.719 \le \int_{0.0}^{1} \frac{e^{-x}}{1+x} dx - e + 2 \le 1.164 - 0.718$$

 $0,372 \le I \le 0,446$

 $0.37 \le I \le 0.45$ l'amplitude de l'intervalle est 0.45 - 0.37 = 0.08 donc est strictement inférieure à 10^{-1} .