Exercice1

- 1) $v_2 = \frac{1}{4} \times v_1 + 120 = 150$ litres au bout de 2 semaines
- $v_3 = \frac{1}{4} \times v_2 + 120 = 157,5$ litres au bout de 3 semaines

2) chaque semaine il reste $\frac{1}{4}$ de la semaine précédente (car il perd les $\frac{3}{4}$) auxquels on rajoute 120 nouveaux

litres . donc $v_{n+1} = \frac{1}{4}v_n + 120$

 $(3)v_2-v_1 \neq v_3-v_2$ la suite est donc non arithmétique

$$\frac{v_2}{v_1} \neq \frac{v_3}{v_2}$$
 la suite est donc non géométrique

$$4)u_{n+1} = 160 - v_{n+1} = 160 - \left(\frac{1}{4}v_n + 120\right) = -\frac{1}{4}v_n + 40 = \frac{1}{4}(-v_n + 160) = \frac{1}{4}u_n$$

Donc la suite (u_n) est géométrique de raison $\frac{1}{4}$ et de premier terme $u_1=160-v_1=40$

5) donc d'après le cours $u_n = u_1 q^{n-1}$

Soit ici
$$u_n = 40 \times (\frac{1}{4})^{n-1}$$

Donc
$$v_n = 160 - 40 \times (\frac{1}{4})^{n-1}$$

6) Au bout de 10 semaines on a déposé 10×120 litres mais il restera $v_{10} \approx 160$ litres Donc 1040 litres auront été utilisés ou se seront décomposés .

Exercice2

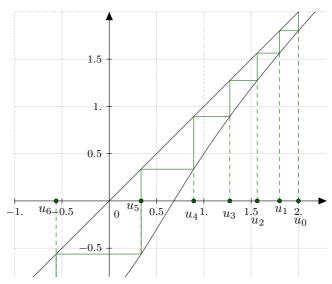
- 1. $u_1 = 1500 1500 \times \frac{20}{100} + 50 = 1500 \times 0.8 + 50 = 1250$. $u_1 = 1250$
- 2. Une diminution de 20% de la surface engazonnée se traduit par une multiplication par $1 \frac{20}{100} = 0.8$. Pour obtenir la surface engazonnée u_{n+1} de l'année n+1, on multiplie donc la surface engazonnée u_n de l'année n par 0.8 auquel on rajoute les 50 m^2 de nouveau gazon. Donc pour tout entier naturel n, $u_{n+1} = 0.8u_n + 50$.
- 3. (a) On sait que $v_n = u_n 250$ donc $u_n = v_n + 250$. Pour tout entier naturel n: $v_{n+1} = u_{n+1} 250 = 0.8u_n + 50 250 = 0.8\left(v_n + 250\right) 200 = 0.8v_n + 0.8 \times 250 200 = 0.8v_n.$ (v_n) est donc une suite géométrique de raison q = 0.8 et de premier terme $v_0 = u_0 250 = 1500 250 = 1250$
 - (b) Pour tout entier naturel n, $v_n = v_0 \times q^n = 1250 \times 0.8^n$
 - (c) Pour tout entier naturel n, $u_n = v_n + 250 = 1250 \times 0.8^n + 250$
 - (d) $u_4 = 1250 \times 0.8^4 + 250 = 762$. Au bout de quatre années, la surface engazonnée est de 762 m²
- 4. Tant que u > 500 faire
 - u prend la valeur $0.8 \times u + 50$
 - n prend la valeur n+1

Exercice3

Soit (u_n) la suite définie par $u_0 = 2$ et pour tout n de \mathbb{N} , $u_{n+1} = u_n - \frac{1}{(u_n)^2 + 1}$.

1. Calculer, en précisant vos calculs,
$$u_1$$
 et u_2 (on donnera des valeur exactes).
$$u_1 = u_0 - \frac{1}{(u_0)^2 + 1} = 2 - \frac{1}{4+1} = 2 - \frac{1}{5} = \frac{9}{5}$$
$$u_1 = u_1 - \frac{1}{(u_1)^2 + 1} = \frac{9}{5} - \frac{1}{\frac{81}{25} + 1} = \frac{9}{5} - \frac{25}{106} = \frac{829}{530}$$

2.



3. Déterminer le sens de variation de la suite
$$(u_n)$$
 (On démontrera sa réponse). Pour tout entier $n \ge 0$, $u_{n+1} - u_n = u_n - \frac{1}{(u_n)^2 + 1} - u_n = -\frac{1}{(u_n)^2 + 1} < 0$ (car $(u_n)^2 + 1 > 0$).

Donc
$$(u_n)$$
 est décroissante.

4. Écrire un algorithme qui calcule et affiche la valeur de u_n pour un entier n supérieur ou égal à 1 donné en entrée.

```
DÉBUT
Entrer N
U prend la valeur {\bf 2}
Pour K allant de {\bf 1} à N
U prend la valeur U-1/(U^2+1)
Fin Pour
Afficher U
Fin
```

- 5. Donner une valeur approchée de u_{50} arrondie à 10^{-2} . $u_{50} = -4,98$
- 6. Compléter l'algorithme suivant qui qui détermine et affiche le plus petit entier p tel que $u_p < -6$.

```
variable U est un réel. n est un entier
          n prend la valeur 0
entrée
            U prend la valeur 2
traitement
   Tant que U \geqslant -6 faire
      N prend la valeur N+1
      U prend la valeur U-1/(U^2+1)
   Fin Tant que
sortie afficher N
```

- 7. Programmer cet algorithme à la calculatrice et donner la valeur de p. le plus petit entier p tel que $u_p < -6$ est p = 82.
- 8. Peut-on affirmer que pour tout $n \ge p$, $u_n < -6$? Justifier. Comme $u_{82} < -6$ et (u_n) est décroissante, pour tout $n \ge 82$, $u_n \le u_{82} < -6$.

Oui, on peut affirmer que u_n est strictement inférieur à -6 pour tout entier n à partir de 82.