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ABSTRACT 

  

For four centuries, Galileo and Eötvös have shown in several experiments the equality 

of the gravitational mass and the inertial mass. Einstein has explained this equality by the 

equivalence principle (EQ), but other possibilities exist. 

 The reason of the equality of the gravitational mass and the inertial mass could be much 

deeper hence the introduction of the EQ is not necessary.  

To show it, we consider a test particle P of inertial mass m and gravitational mass M in 

a Newtonian gravitational field U. If the ratio K=M/m is variable the mass M is a function of 

U.  

Consequently the internal energy of the particle E=Mc² depends on U. However a 

variation of E implies a correlated variation of the fundamental constants.  

But the existence of a stable universe (allowing the construction of complex and durable 

systems) claims, on the contrary, that these quantities remain constant. Therefore it is not 

need to resort to the principle of equivalence.  

The theory developed in this paper makes the distinction between inertial field and 

gravitational field but with K=1. As the RG it explains the advance of the Mercury 

perihelion, the deviation of the light by the Sun and the Mössbauer effect. 

         But contrary to the RG this theory authorizes the existence of stable celestial bodies 

whose mass is not limited. 

         The metric one thus obtained does not present any singularity (in RG, Schwarzschild 

singularity). In this theory the concept of black hole disappears. 

 

 

 

 

 

CONVENTIONS AND ABBREVIATIONS 

 

The sign conventions for the metric and curvature tensors are (-, +, +) in the terminology 

of Mismer, Thorne & Wheeler [1]. That is, the metric signature is  ( +, -, -, - ). 

For this paper we use geometric units in which c = G =1. (Except the § 4.22) 

The following symbols and abbreviations are used throughout: 

 

∂μ or ,μ                  partial derivative  

Dμ or ;μ                 covariant derivative 

ln                          natural logarithm 

i, j, k,….               Latin indices equal to 1, 2 & 3 

λ, μ, ν,…              Greek indices equal to 0, 1, 2, & 3  

cst                        constant quantity 
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 laplacian on a four dimensional manifold 

[ , ]L                      Lie’s brackets 

         ≈                           Asymptotically equal to 

         #                           Approximately equal to  

 

 

 

1 – INTRODUCTION AND HYPOTHESIS [5]. 
 

 

The study of the movement of the non charged matter lead to consider that the space-

time is a four dimensional differentiable Riemannian manifold U whose the metric tensor g 

has the signature (+, -, -, -). 

 

ds² = gλμ dx
λ
 dx

μ
                                                                                                                             (1.1) 

 

For example the space-time of the rotating disk is not flat. 

 

On the other hand we reject, with J. L. Synge, the weak equivalence principle. We 

utilise, for describe the non charged matter, three fields on the manifold U: 

- The inertial field who is a field of symmetric connection . 

- The matter field who is a field q taking its values in a three dimensional manifold. 

- The gravitational field who is a real scalar field . 

 

         From now we suppose that the matter is a perfect fluid with an equation of state  = (p) 

where  is the density and p the pressure of the fluid, the habitual hypothesis of 

approximation lead to the lagrangians : 

 

         Linert = g
λμ

Rλμ (-g) 

         Lgrav = 2,  
, 

 (-g) 

         Lmat  = 16 (-g) 

         Lmat + grav = 16 f()(-g) 

         L = Linert + Lgrav + Lmat + grav 

         L = { g
λμ

Rλμ  + 2,  
, 

 + 16 f() } (-g)                                                              (1.2) 

Where: 

- Rλμ is the Ricci tensor of the connection . 

-  = ρ(q
j
 , det(q

j
,  q

k, 
)).  

- f is a function describing the interaction between the matter and the gravitational 

field, with f(0) =1.   

 

The constants in (1.2) are done by choice of the units.   

The eulerian equations for  show that  is the riemannian connection of U [9 p. 338 to 

345]. 

The other equations are (we don’t write the equations for the q
j
 ): 

 

 = 4f ()                                                                                                             (1.3) 

Rλμ – ½ R gλμ = 8π Tλμ                                                                                                  (1.4) 

                                                                                                   

         Where R = g
λμ

Rλμ  is the Riemannian curvature of U,  = 
,  

;  and : 



 3 

 

Tλμ = Tλμ( Lmat + grav) + Tλμ( Lgrav) 

 

But  f() is independent of  g  hence we have : 

 

Tλμ( Lmat + grav) = f() Tλμ( Lmat) 

 

Tλμ = f()(( +p)uu - p gλμ ) - {,  ,    - ½ gλμ ,  
, 

 }/4                               (1.5) 

 

 

 

2 – HOLONOMIC MEDIUMS [2]. 

 

If we assume that U contains a material distribution (in interaction with a gravitational 

field or no) such as the stress-energy tensor can be written: 

 

Tλμ = r uλ uμ - θλμ                                                                                                                      (2.1) 

 

Where: 

 

r is a positive scalar. 

uλ is the 4- velocity of the medium. 

θλμ is a symmetrical covariant tensor. 

 

Then the distribution described by Tλμ can be called a holonomic medium if and only if 

the vector K defined by:  

 

r Kμ =  Dλ θ
λ
μ                                                                                                                (2.2) 

 

is a gradient. So we take: 

 

 Kλ = ∂λ lnF                                                                                                                   (2.3) 

 

 r being the pseudo-density and F the index of the distribution. 

In that case the flow lines of the medium are geodesics of the conformal metric: 

 

 dσ² = F² ds² = γλμ dx
λ
 dx

μ
                                                                                              (2.4) 

 

The tensor metric γ is thus the only one having physical reality. Consequently, the 

notions of time and space must be deduced from it. 

 

We define the vortex tensor of the medium by: 

 

 Ω λμ = ∂λ (Fuμ) - ∂μ (Fuλ)                                                                                              (2.5) 

 

A. Lichnerowicz says that the motion of a holonomic medium is without vortex or 

irrotational if and only if: 

 

Ω λμ = 0                                                                                                                         (2.6) 
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It is important to remember that a perfect fluid of density ρ and pressure p has a stress-

energy tensor: 

 

Tλμ = (ρ + p) uλ uμ – p gλμ                                                                                              (2.7) 

 

If an equation of state  ρ = φ(p)  exits  the perfect fluid is a holonomic medium with: 

 

r = ρ + p                F = exp ( ∫ dp /( ρ + p))                                                                   (2.8) 

 

 

 

3 – COMOVING COORDINATE SYSTEMS AND ABSOLUTE TIME [3], [4], [6], [7]. 

 

Definition. It is said that a coordinate system of U is comoving if and only if:        

 

u
i
 = 0                                                                                                                             (3.1) 

 

Hence, we have: 

 

u
0
 = 1/ √(g00)          u

λ
 = δ

λ
0 / √(g00)        uλ = g0λ / √(g00)                                              (3.2) 

 

Theorem 3.1  Let a holonomic medium then it exists a comoving coordinate system 

such we have: 

 

dσ² = (dx
0
)² + 2 γ0i dx

0
dx

i
  +  γij dx

i
dx

j
                                                                         (3.3) 

 

with 

 

∂0 γ0i = 0                                                                                                                        (3.4) 

 

Proof.    With the possible coordinate transformations we can choose the value of four 

quantities, hence it exists a comoving coordinate system such that  γ00 = 1  i.e. 

 

u
1
 = u

2
 = u

3
 = 0  &  γ00 = 1   

 

We note Γ
λ
μν the Christoffel symbol of  dσ², the geodesic equation of  dσ² is: 

 

d²x
λ
/dσ²  +  Γ

λ
μν (dx

μ
/dσ)(dx

ν
/dσ)  =  0                                                                         (3.5) 

 

The coordinates are comoving, hence the curves (x
1
, x

2
, x

3
) =cst  are geodesic i.e. 

 

 dx
μ
/dσ = δ

μ
0    

 

(3.5) gives Γ
λ
00 = 0 hence 

 

Γ
i 

00 = ½ γ
iλ 

(∂0 γ0λ + ∂0 γλ0  - ∂λ γ00) = 0 

 

Hence 

 

γ
ij 

∂0 γ0j = 0 
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And 

 

∂0 γ0i = 0                                                                                                                         

 

That completes the proof.  

 

 

Theorem 3.2   Let a holonomic medium where the motion is without vortex: 

 

1)  It exists a comoving coordinate system such that: 

 

dσ² = dt²  -  ηij dx
i
dx

j  
                                                                                                   (3.6) 

 

ds² = dt² / F²  -  hij dx
i
dx

j  
                                                                                             (3.7) 

   

Where hij is definite positive. 

 

2)  r √(h) / F  = C(x
1
, x

2
, x

3
 )                                                                                         (3.8) 

 

Where h = det(hij ). 

 

 

Proof. 

 

Firstly, we apply the theorem 1 and we utilize a comoving coordinate system satisfying 

to (3.3) & (3.4). 

 

F²g00 = γ00 = 1 

 

g00 = 1/ F² 

 

 

We consider the vorticity tensor: 

 

Ω λμ = ∂λ (Fuμ) - ∂μ (Fuλ)   

 

Ω λμ = ∂λ (F²g0μ) - ∂μ (F²g0λ)   

 

Ω λμ = ∂λ γ0μ  - ∂μ γ0λ 

 

The movement is without vortex hence: 

 

Ω λμ = 0 

 

Hence with (3.4) 

 

∂i γ0j = ∂j γ0i               ∂0 γ0i = 0 

 

Hence it exits a numerical function C = C(x
1
, x

2
, x

3
)  such as: 
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γ0i = ∂i f 

 

Let t = x
0
 + f 

 

dt = dx
0
 + ∂i f dx

i
 = dx

0
 + γ0i dx

i
 

 

dt² = (dx
0
)²  + 2 γ0i dx

0
dx

i
 +  γ0i γ0j dx

i
dx

j
   

 

(dx
0
)²  + 2 γ0i dx

0
dx

i
 = dτ² -  γ0i γ0j dx

i
dx

j
 

 

We put in (3.3) 

 

dσ² = dt² + ( γij  - γ0i γ0j )dx
i
dx

j
    

 

Let  ηij = γ0i γ0j - γij 

  

We obtain (3.6) 

 

dσ² = dt² - ηij dx
i
dx

j 
 

 

Lastly with  hij = ηij / F² we are: 

 

ds² = dσ² / F² = dτ² / F² - hij dx
i
dx

j  
  

 

Secondly, we write the conservation identities. 

 

Dλ T
λ
μ = 0 

 

Dλ ( r u
λ
 uμ ) - Dλ θ

λ
μ = 0 

 

Dλ ( r u
λ
 uμ ) – r ∂λ F / F = 0 

 

We use a classical expression of the divergence of a symmetric tensor and the 

components of the 4-velocity. 

 

u
λ
  = F δ

λ
0             &           uλ = δ

0
λ /F   

 

∂λ ( r δ
λ
0 δ

0
μ √(-g) ) / √(-g)  -  ½ ( ∂μ gαβ ) ( r δ

α
0 δ

β
0 F² ) - r ∂μ F / F = 0 

 

Where g = det ( gλμ ) = h / F² 

 

Therefore  

 

∂λ ( r δ
λ
0 δ

0
μ √(h) / F )F / √(h)  -  ½ ( ∂μ g00 ) ( r F² ) - r ∂μ F / F = 0 

 

But g00 = 1/ F² 

 

∂0 ( r δ
0

μ √(h) / F )F / √(h)  -  ½ ( -2 ∂μ F / F
3
 ) ( r F² ) - r ∂μ F / F = 0 

 



 7 

∂0 ( r δ
0

μ √(h) / F )F / √(h) = 0 

 

∂0 ( r δ
0

μ √(h) / F ) = 0 

 

∂0 ( r √(h) / F ) = 0 

 

That completes the proof. 

 

The two theorems preceding have an important consequence. 

 

The time t is the same for all points of U in relative rest. Therefore this is an 

absolute time defined with a univocal manner.  
 

 

 

4 – FUNDAMENTAL PROPERTIES OF THE GRAVITATIONAL FIELD  
 

 

4.1  TRAJECTORIES IN A GRAVITATIONAL FIELD 

  

         We consider a gravitational field interacting with a perfect fluid; we have with the 

notations of the paragraph 1:  

 

         Tλμ = f()(( +p)uu - p gλμ ) - {,  ,    - ½ gλμ ,  
, 

 }/4                               (4.1) 

 

         Theorem 4.1 A gravitational field interacting with a perfect fluid is a holonomic 

medium with a pseudo-density: 

 

          r = ( + p) f()                                                                                                            (4.2) 

 

and an index : 

 

          F = f()F0                                                                                                                    (4.3) 

  

where F0 = exp ( ∫ dp /( ρ + p)) is the index of the fluid only. 

          More over the trajectory of a test-body in a gravitational field is a geodesic of the 

conformal metric :   

           

          dσ² = (f()F0 )² ds²                                                                                                       (4.4) 

 

         Proof. 

 

         Necessary we have r = ( + p) f() and : 

         Tλμ = f()(( +p)uu - p gλμ ) - {,  ,    - ½ gλμ ,  
, 

 }/4 

         T
λ
μ = f()(( +p)u


u - p g

λ
μ ) - {

, 
 ,    - ½ g

λ
μ ,  

, 
 }/4 

         T
λ
μ = r u


u - 


 

         Where : 

         

 = f()pg

λ
μ  + {

, 
 ,    - ½ g

λ
μ ,  

, 
 }/4 

         D

 = (f()p) + {D(


)  + 


 D()  - D() 


}/4 
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         D

 = (f()p) + {D(


)  + 


 [D()  - D()]}/4 

         D

 = (f()p) + {D(


)  + 


 [ ,]L}/4 

         D

 = (f()p) +  /4 

         D

 = (f()p) + f ()  

         D

 = ( + p) f () +f()p 

         D

 = ( + p) f()[f ()/f() + p/( + p)] 

         D

 = ( + p) f()[ ln f() +  ln F0] 

         D

 = r  ln (f()F0) 

      

         Hence, by definition, the medium is holonomic and, by virtue of the paragraph 2, the 

trajectory of a test-body in a gravitational field is a geodesic of the conformal metric:   

 

         dσ² = (f()F0 )² ds² 

    

         For the determination of the function f see § 4.31. 

 

4.2  THE GRAVITATIONAL FIELD IN VACUUM 

 

4.21 EQUATIONS WITH SPHERICAL SYMMETRY  

 

         In vacuum we have  = p = 0 and the trajectory of a test- body is a geodesic of the 

metric ds². 

 

         We write the metric ds² with a spherical symmetry: 

 

         ds² = e
2a

dt² - e
2b

 (dr² + r² (dθ² + sin²θ dφ²))                                                                  (4.5) 

           

         where a and b are some functions of r. 

         We have  = 0 and   is a function of r, the Einstein's equations give : 

 

         4 b + r b ² - r  ² + 2 r b = 0                                                                                     (4.6) 

 

         2 a + 2 b  + 2 r a b + r b ² + r  ² = 0                                                                      (4.7) 

 

         a + r a ² + b - r  ² + r a + r b = 0                                                                          (4.8) 

 

         We can add the field equation for  : 

 

         (2/r + a + b)  +   = 0                                                                                           (4.9) 

 

         The complete integration of these equations is easy, but we have a particular important 

solution:  

         

         b = - a =  = m / r                                                                                                       (4.10) 

 

         We see that  is similar to the Newtonian potential and we have: 

 

         ds² = e
-2

dt² - e
2

 (dr² + r² (dθ² + sin²θ dφ²))                                                              (4.11) 
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4.22 – MOTION IN A STATIC FIELD WITH A SPHERICAL SYMMETRY 

 

We determine the geodesics of the metric (We use physic units): 

 

ds² = A c²dt² - B (dr² + r² (dθ² + sin²θ dφ²))                                                                (4.12) 

                                                     

Where A and B are function of r with A ≈ 1 and B ≈ 1. 

We consider the function L defined by: 

 

L = A c²dt²/ds² - B dr²/ds² - r² B (dθ²/ds² + sin²θ dφ²/ds²)                                          (4.13) 

 

We note ′ the derivation d /ds. 

 

L =A c² t′ ²- B r′ ² - r² B (θ′ ² + sin²θ φ′ ²)                                                                   (4.14) 

 

We write the Lagrange equations. 

 

(∂L/∂q′ ) ′  - ∂L/∂q = 0                                                                                                (4.15) 

 

with q = t, θ, φ. 

 

(A t) = 0                                                                                                                    (4.16) 

  

(B r² θ′)′ - r² B sinθ cosθ φ′ ² = 0                                                                                 (4.17) 

 

(r² B sin²θ φ′ )′ = 0                                                                                                      (4.18) 

 

(4.16) gives : 

 

A t = k/c                          

 

dt = k ds / Ac                                                                                                              (4.19) 

  

where k = cst and k #1, (4.17) admits θ = π/2 as particular solution, that corresponds to 

the motions around the star in the equatorial plane. 

 

(4.17) gives then: 

 

(r² B φ′ )′ = 0                                                                                                               (4.20) 

 

r² B φ′  = h/c   

 

ds = r²c B dφ / h                                                                                                          (4.21) 

 

where h = cst.                    

 

In (4.12) we replace dt by it value in (4.19) and with θ = π/2, we obtains: 
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B dr²  +  r² dφ² = (k² /A - 1) ds²                                                                                  (4.22) 

Now we substitute for ds with (4.21): 

 

B (dr²  +  r² dφ²) = (k² /A - 1) r
4
 c² B² dφ² / h²                                                            (4.23) 

 

(d(1/r) / dφ)² = (k² /A – 1) B c²/ h² - 1 / r²                                                                   (4.24) 

 

We put B = 1/A = e
2mG/rc²

 and u = 1/r in (4.24) and then we expand in series to the third 

order. We obtain: 

 

(du/dφ)² = P(u) = c²(k²-1)/h² + 2G(2k²-1)mu/h² -u² +  

                             2G²m²(4k²-1) u²/c²h² +  4G
3
(8k²-1)m

3
u

3
/(3c

4
h²)                           (4.25) 

 

         With this expression we can compute the advance of the perihelion of Mercury (see for 

example [10], pages 115 to 117), we obtain (with k = 1): 

 

          δω = 6G²m²π /c²h²                                                                                                     (4.26) 

 

          It is the value usually accepted.   

 

 

 

4.3 – THE INTERIOR CASE  

 

4.31– DETERMINATION OF THE FUNCTION f 

 

         We consider a material distribution without pressure (pure matter or dust) interacting 

with a gravitational field Φ by virtue of the theorem 4.1 its index F is: 

 

          F = f(Φ)                                                                                                                      (4.27) 

 

by virtue of the theorem (3.1) it exists a comoving coordinates system such as, if g is the 

metric tensor, γ =  F²g, we have: 

 

          γ00 = F² g00 = f(Φ)² g00 = 1                                                                                         (4.28) 

  

          f(Φ) = 1/√(g00)                                                                                                           (4.29) 

 

          If on the analogy of  (4.10) we want g00 = e
-2Φ

 then we must have: 

 

          f(Φ) = e
Φ

                                                                                                                   (4.30) 

 

          These considerations determine, in general, the function f. The equations of the theory 

become: 

 

  = 4 e
Φ

                                                                                                              (4.31) 

                                                                                                 

 Rλμ – ½ R gλμ = 8πe
Φ

(( +p)uu - p gλμ ) – 2(,  ,    - ½ gλμ ,  
, 

 )            (4.32) 
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It is important to observe that the quantities appearing in these equations, in particular ρ 

and p are measured in the Riemannian manifold (U, ds²), a contrario the real values must be 

measured in (U, dσ²); we have for example, with evident notations: 

 

          ρreal = dm/dvreal = dm/(F
3
dv) = ρ/ F

3 
                                                                         (4.33) 

           

          In the same way we have: 

 

          preal =p/ F
3
                                                                                                                  (4.34) 

 

 

 

4.32– EQUATIONS WITH SPHERICAL SYMMETRY IN COMOVING 

          COORDINATES SYSTEM 

 

          We utilize the metric (4.5), we have p = 0 and ρ ≠ 0. 

 

          ds² = e
2a

dt² - e
2b

 (dr² + r² (dθ² + sin²θ dφ²))                                                               (4.35) 

           

          a, b, ρ and the gravitational field Φ are some functions of r, the Einstein's equations 

(1.4)   give: 

 

          (4b′ + r b′ ² + 2r b″) /r e
2b

 = - 8π ρ e
Φ
 + Φ′ ² / e

2b
                                                       (4.36) 

  

               

          (2a′ + 2b′ + 2r a′ b′ + r b′ ²) /r e
2b

 = - Φ′ ² / e
2b

                                                           (4.37) 

 

 

          (a′ + b′ + r a′ ² + r a″ + r b″) /r e
2b

 = Φ′ ² / e
2b

                                                            (4.38) 

 

          and the field equation for Φ: 

 

           = - (2Φ′ + r a′ Φ′ + r b′ Φ′ + r Φ″)/ r e
2b 

= 4π ρ e
Φ
                                              (4.39) 

 

          With (4.29) we obtain: 

 

          Φ = -a                                                                                                                        (4.40) 

 

          We replace Φ by -a in (4.36 to 39): 

 

          (4b′ + r b′ ² + 2r b″) /r e
2b

 = - 8π ρ e
-a

 + a′ ² / e
2b

                                                       (4.41) 

     

          (2a′ + 2b′ + 2r a′ b′ + r b′ ²) /r e
2b

 = - a′ ² / e
2b

                                                            (4.42) 

 

          (a′ + b′ + r a′ ² + r a″ + r b″) /r e
2b

 = a′ ² / e
2b

                                                             (4.43) 

 

          (2a′ + r a′ ² + r a′ b′ + r a″)/ r e
2b 

= 4π ρ e
-a

                                                                (4.44) 

 

          In (4.44) we replace ρ by it value in (4.41): 
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          (4b′ + r b′ ² + 2r b″) /r e
2b

 = - 2(2a′ + r a′ ² + r a′ b′ + r a″)/ r e
2b

 + a′ ² / e
2b

               (4.45) 

 

          We simplify (4.45) then (4.42) and (4.43), we obtain: 

 

          4a′ + 4b′ + r a′ ² + r b′ ² + 2r a′ b′  +  2r a″ + 2r b″ = 0                                               (4.46) 

 

          2a′ + 2b′ + r a′ ² + r b′ ² + 2r a′ b′ = 0                                                                         (4.47) 

 

          a′ + b′  +  r a″ + r b″ = 0                                                                                             (4.48) 

 

          In (4.46 to 48) we put y = (a + b), we are: 

 

          4y′ + r y′ ² + 2r y″ = 0                                                                                                (4.49) 

 

          y′ (2 + r y′) = 0                                                                                                           (4.50) 

 

          y′ + r y″ = 0                                                                                                                (4.51) 

 

          The solutions are evident: 

 

1) y′ = 0    y = a + b = K = cst.                                                                             (4.52) 

Using a change of variable (r → αr) we can choose K = 0, we obtain: 

 

          b = -a  = Φ                                                                                                                 (4.53) 

 

          The equation (4.44) becomes: 

            

          (2′ + r ″)/r = - 4π ρ e
3

                                                                                         (4.54) 

 

          This equation permits, knowing ρ, the determination of the field , this situation is the 

same one as in classic mechanics, it is not the case in RG. For the metrics we have:                                            

            

          ds² = e
-2

dt² - e
2

 (dr² + r² (dθ² + sin²θ dφ²))                                                             (4.55) 

 

          dσ² = e
2

 ds² = dt² - e
4

 (dr² + r² (dθ² + sin²θ dφ²))                                                   (4.56) 

 

          The metric dσ² is the frame of the physics and all the measures must be done with its. 

 

2) 2 + r y′ = 0  a′ + b′ = -2/r  b = -a – ln r²  b =  – ln r²  e
b
 = e


/r². We have: 

 

ds² = e
-2

dt² - e
2

 (dr² + r² (dθ² + sin²θ dφ²))/r
4
                                                         (4.57) 

 

ds² = e
-2

dt² - e
2

 (dr²/r
4
 + (dθ² + sin²θ dφ²)/r²)                                                         (4.58) 

 

We u = 1/r and we obtain: 

 

          ds² = e
-2

dt² - e
2

 (du² + u² (dθ² + sin²θ dφ²))                                                            (4.59) 

 

          We return to the first case. 
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5– APPLICATIONS 

 

 

         For example we remember Einstein, in the year 1917, wanted to build a static hyper-

spherical universe filled up pure matter, and with this intention, he has introduced the 

cosmological constant. In our theory that constant is not necessary. The metric of the static 

hyper-spherical universe is: 

 

         ds² = dt² - (dr² + r² (dθ² + sin²θ dφ²))/ (1+r²/4a²)²                                                         (5.1) 

 

        where a is a constant strictly positive. The comparison between (5.1) and (4.56)  gives:  

 

        Φ = -ln(1 + r²/4a²)/2                                                                                                       (5.2) 

 

        Then the equation (4.54) gives: 

 

        ρ = - e
-3Φ

 (2′ + r ″)/4πr                                                                                             (5.3) 

 

        The relations (4.30) and (4.33) give: 

 

        ρreal = ρ e
-3Φ

 = - e
-6Φ

 (2′ + r ″)/4πr = (4a² + r²)(12a² +r²)/ 256π a
6
                            (5.4) 

 

       We can compute the mass of that universe, it is infinite. 

       Now that universe has only a historic interest but one never knows. 

 

                                                             

     

6 – CONCLUSION 

 

 

       The equality of the inertial mass and the gravitational mass do not imply necessarily the 

weak principle of equivalence. The theory presented in this paper makes the distinction 

between the gravitational field and the inertial field. It gives the correct value for the advance 

of the perihelion of Mercury but on the over hand it presents several interesting and 

innovative points.  

        Firstly the analogue of the Schwarzschild solution does not present a singularity except 

the origin.  

        Secondly it is possible to build a stable mass of matter as large as one wants.  

        These last considerations show the possibility to re-examine the theory of the black holes.    
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