Proton-neutron electromagnetic interaction.

Bernard Schaeffer, Paris, France

Nuclear energy and Coulomb's law

- It is well known that *nuclear energy* is around one *million* times more concentrated than *chemical energy*, never explained, up to now.
- The nucleon, being one million times **smaller** than an atom, its electrostatic energy is one million times **larger**, according to the **1/r** Coulomb's law.

Estimate of ²H binding energy

Using the radius of the proton, R = 0.88 fm, the deuteron binding energy calculated from electric Coulomb's law is:

not far from 2.2 MeV, the measured value.

Electromagnetic interactions

- As amber (ἤλεκτρον) attracts small neutral pieces of paper, a proton **attracts** a not so neutral neutron.
- Collinear and opposite magnets (μαγνήτης) repulse themselves.
 Same phenomenon between nucleons.
- In a nucleus the electric attraction is equilibrated by the magnetic repulsion.

Electromagnetic interactions

- As amber (ἤλεκτρον) attracts small neutral pieces of paper,
 a proton attracts a not so neutral neutron.
- Collinear and opposite magnets (μαγνήτης) repulse themselves.
 Same phenomenon in the deuteron.
- Electric attraction equilibrates magnetic repulsion.
- no mysterious strong force needed.
- no centrifugal force and/or hard core needed.

The nuclear shell model is unable to calculate the binding energy of even a simple nucleus as ²H.

The nuclear binding energies of ²H and ⁴He have been calculated by applying **only electric and magnetic Coulomb's laws**.

Electric charge of the proton

- It is well known that the proton contains a positive elementary electric charge
- $e = +1.6 \times 10^{-19}$ Coulomb

Electric charges in the neutron

- It is less known that the neutron contains electric charges with no net charge.
- We shall assume for the sake of simplicity that the neutron electric charges are +e and –e.
- The exact dipole formula has to be used, not $2a/r^2$, valid only when $a << r_{np}$:

$$\frac{e^2}{4\pi\epsilon_0}\left(\frac{1}{r_{np}+a}-\frac{1}{r_{np}-a}\right)$$

Neutron-proton electric interaction

The total electric energy of 3 aligned electric charges is:

$$U_e = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1q_2}{r_{12}} + \frac{q_2q_3}{r_{23}} + \frac{q_3q_1}{r_{31}} \right)$$

Assuming that the electric charges are +e for the proton, +e and –e for the neutron, the total electric energy is, for 3 electric charges:

$$U_e^{{}^{2}H} = \frac{e^2}{4\pi\epsilon_0} \left(\frac{1}{r_{np}+a} - \frac{1}{r_{np}-a} - \frac{1}{2a}\right)$$

When the proton is far away, the energy is infinite, unphysical. With the exact induced dipole formula for the neutron, one obtains:

$$U_{e}^{^{2}H} = \frac{e^{2}}{4\pi\epsilon_{0}} \left(\frac{2}{r_{np}+a} - \frac{2}{r_{np}-a}\right)$$

Deuteron electromagnetic structure

Spin

+e neglected

Electric charges:

Neutron dipole induced by the proton +e -e +e +e

Deuteron non-zero quadrupole Electrostatic induction means neutron-proton attractive force

Magnetic moments:

Deuteron magnetic moment $\mu_D = \mu_p - |\mu_n| > 0$

Opposite magnetic moments means repulsive force

Approximate proton-neutron Coulomb potential in the deuteron

The proton positive charge attracts the neutron negative charge, equilibrated by the magnetic repulsion.

In a first approximation,
the positive charge of the neutron is neglected:
$$U_{em} = U_e + U_m = -\frac{e^2}{4\pi\epsilon_0 r_{np}} + \frac{\mu_0 |\mu_n \mu_p|}{2\pi r_{np}^3}$$

Calculated static equilibrium distance

The potential minimum, obtained by derivation, gives the neutron-proton equilibrium distance:

Analytical deuteron binding energy formula

Using r_{np} at equilibrium gives an approximate formula for the deuteron binding energy:

$$B = -\frac{e^3 c}{6\pi\epsilon_0 \sqrt{6\mu_n \mu_p}} J = -1.6 \text{ MeV}$$

Only fundamental constants, no fit! Experimental value : -2.2 MeV

Error evaluation of total ²H binding energy

The binding energy is the minimum of the potential:

Exact dipole formula:

3 % error

$$U_{em}^{^{2}H} = \frac{e^{2}}{4\pi\epsilon_{0}} \left(\frac{2}{r_{np}+a} - \frac{2}{r_{np}-a}\right) + \frac{2\mu_{0}|\mu_{n}\mu_{p}|}{4\pi r_{np}^{3}}$$

Analytical formula without +e: 30 % error

$$U_{em}^{^{2}H} = -\frac{e^{2}}{4\pi\epsilon_{0}r_{np}} + \frac{2\mu_{0}|\mu_{n}\mu_{p}|}{4\pi r_{np}^{3}}$$

α particle structure

⁴He (2 protons and 2 neutrons) may be considered approximately as a regular tetrahedron with 60° angles. The magnetic moment of ⁴He being zero, the magnetic moments of its nucleons have to be oppositely paired.

Helium ⁴He potential

The simplified electromagnetic potential for the ⁴He tetrahedron, with only the neutron-proton bonds taken into account, gives a result as good as for ²H:

$$U_{em}^{4He}/A = 2 \times \frac{e^2}{4\pi\epsilon_0} \left(\frac{2}{r_{np}+a} - \frac{2}{r_{np}-a} \right) + \frac{3}{4} \times \left(\frac{2\mu_0 |\mu_n \mu_p|}{4\pi r_{np}^3} \right)$$
Nucleon separation distance r_{np} (fm)
0.0 0.2 0.4 0.6 0.8 1.0
0.1 -2 -2 -3 -4 -5 -6 -7 -4 -4 -5 -6 -7 -7 -7.05 MeV calculated
-7 -7 -05 MeV calculated
-7 -0 -1 -2 -7.05 MeV measured) -7.05 MeV measured -

²H and ⁴He binding energies per nucleon formulas compared

$$U_{em}^{2}{}^{H}_{em}/A = \frac{1}{2} \times \frac{e^{2}}{4\pi\epsilon_{0}} \left(\frac{2}{r_{np}+a} - \frac{2}{r_{np}-a}\right) + \frac{1}{2} \times \left(\frac{2\mu_{0}|\mu_{n}\mu_{p}|}{4\pi r_{np}^{3}}\right)$$
$$U_{em}^{4}_{He}/A = 2 \times \frac{e^{2}}{4\pi\epsilon_{0}} \left(\frac{2}{r_{np}+a} - \frac{2}{r_{np}-a}\right) + \frac{3}{4} \times \left(\frac{2\mu_{0}|\mu_{n}\mu_{p}|}{4\pi r_{np}^{3}}\right)$$

The potential energy ratio between ⁴He and ²H is 4/(3/2) = 6not far from the experimental ratio 7.07/1.11 = 6.4.

Fundamental nuclear constant

$$\frac{e^2}{4\pi\varepsilon_0 R_P} = \frac{\alpha\hbar c}{R_P} = \alpha m_p c^2 = 6.84690165 \text{ MeV}$$

- R_P : proton Compton radius
- m_p : proton mass
- α : fine structure constant

This universal constant is not far from the α particle binding energy, **7.07 MeV** characterizing the nuclear binding energy per nucleon.

H, ²H and ⁴He energies compared

• Hydrogen atom binding energy:

 $B^{H} = \frac{1}{2} \alpha^{2} m_{e} c^{2} = 13.6 \ eV$ Nuclear/chemical ratio:

80,000

• ²H binding energy per nucleon:

$$B^{^{2}H} \approx \frac{1}{6} \alpha m_{p} c^{2} \approx 1.1 \ MeV$$

• ⁴He binding energy per nucleon:

$$B^{^4He} \approx \alpha m_p c^2 \approx 7.07 \ MeV \qquad 500,000$$

So called « Modern » forces replaced by electric AND magnetic Coulomb's laws

Electrostatic attraction replaces strong force. Magnetic repulsion replaces hard core. **No orbiting nucleons**.

Coulomb's laws give the nuclear to chemical energy ratio:

$$\frac{m_p}{\alpha m_e} = 250,000$$

1/r Coulomb's law explains the nuclear/chemical energy ratio, comparable to the atom/nucleon radius ratio.

Thank you for your attention