LIBAN juin 2016

EXERCICE 3 (4 points) Commun à tous les candidats

On considère la fonction f définie sur l'intervalle [0; 1] par : $f(x) = \frac{1}{1 + e^{1-x}}$

Partie A

- 1. Etudier le sens de variation de la fonction f sur l'intervalle [0 ; 1]
- 2. Démontrer que pour tout réel de l'intervalle [0 ; 1], $f(x) = \frac{e^x}{e^x + e}$ (on rappelle que $e = e^1$).
- 3. Montrer alors que $\int_{0}^{1} f(x) dx = \ln(2) + 1 \ln(1 + e).$

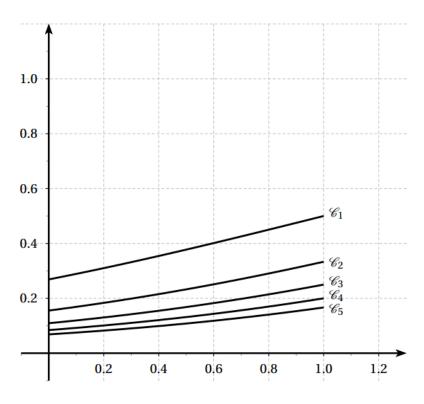
Partie B

Soit n un entier naturel. On considère les fonctions f_n définies sur [0; 1] par : $f_n(x) = \frac{1}{1 + n e^{1-x}}$.

On note C_n la courbe représentative de la fonction f_n dans le plan muni d'un repère orthonormé.

On considère la suite de terme général $u_n = \int_0^1 f_n(x) dx$.

- 1. On a tracé en annexe les courbes représentatives des fonctions f_n pour n variant de 1 à 5. Compléter le graphique en traçant la courbe C_0 représentative de la fonction f_0 .
- 2. Soit n un entier naturel, interpréter graphiquement u_n et préciser la valeur de u_0 .
- 3. Quelle conjecture peut-on émettre quant au sens de variation de la suite (u_n) ? Démontrer cette conjecture.
- 4. La suite (u_n) admet-elle une limite?



CORRECTION

1

Partie A

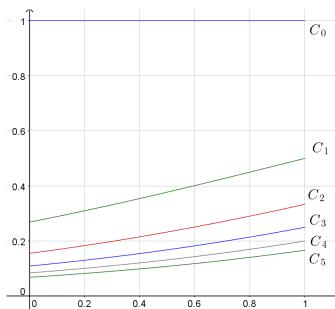
- 1. La dérivée de e^{1-x} est $-e^{1-x}$ donc $f'(x) = -\frac{u'(x)}{u^2(x)} = \frac{e^{1-x}}{(1+e^{1-x})^2}$ donc f'(x) > 0, f est croissante sur [0; 1].
- 2. $f(x) = \frac{1}{1 + e^{1-x}} = \frac{e^x}{e^x (1 + e^{1-x})} = \frac{e^x}{e^x + e}$.

Liban 2016

3. $\int_{0}^{1} f(x) dx = \left[\ln(e^{x} + e) \right]_{0}^{1} = \ln(2e) - \ln(1+e) = \ln 2 + \ln e - \ln(1+e) \quad \text{donc } \int_{0}^{1} f(x) dx = \ln(2) + 1 - \ln(1+e) .$

Partie B

1.



- 2. Soit *n* un entier naturel, u_n est l'aire du domaine limité par la courbe C_n l'axe des abscisses, les droites d'équation x = 0 et x = 1 et $u_0 = 1$
- 3. Graphiquement, on peut supposer que la suite (u_n) est décroissante.

n+1 > n, $e^{1-x} > 0$ donc $1 + (n+1)e^{1-x} > 1 + ne^{1-x} > 0$ donc $\frac{1}{1 + (n+1)e^{1-x}} < \frac{1}{1 + ne^{1-x}}$ donc $u_{n+1} < u_n$, la suite (u_n) est décroissante.

4. Pour tout x de [0; 1], $1 \le e^{1-x} < e$ donc, $1 + n \le 1 + n$ e $1 - x \le 1 + n$ e donc en passant aux inverses : $\frac{1}{1+n} \le \frac{1}{1+n} e^{1-x} \le \frac{1}{1+n} e^{1-x}$

donc

$$\int_{0}^{1} \frac{1}{1+n} dx \le \int_{0}^{1} \frac{1}{1+n e^{1-x}} dx \le \int_{0}^{1} \frac{1}{1+n e} dx \text{ soit } \frac{1}{1+n} \int_{0}^{1} dx \le u_{n} \le \frac{1}{1+n e} \int_{0}^{1} dx \le u_{n} \le u_{$$

 $\lim_{n \to +\infty} \frac{1}{1+n} = \lim_{n \to +\infty} \frac{1}{1+n} = 0 \text{ donc d'après le théorème des gendarmes}, \quad \lim_{n \to +\infty} u_n = 0$