Une suite numérique (u_n) est définie par son premier terme $u_1 = 2$ et par la relation, valable pour $n \ge 1$:

$$\ln (u_{n+1}) = \frac{1}{2} \left[\ln(u_n) + \ln \left(\frac{n}{(n+1)^2} \right) \right]$$

- 1. Vérifier, en utilisant les propriétés du logarithme népérien noté ln, que cette suite est effectivement définie et que tous ses termes sont inférieures ou égaux à 2.
- 2. On pose, $n \ge 1$, $v_n = n u_n$, puis $w_n = \ln v_n$

Déterminer la relation entre w_n et W_{n+1} et en déduire que la suite w_n est une suite géométrique dont on précisera la raison.

3. Déterminer la limite de la suite w_n et en déduire celle de la suite u_n .

CORRECTION

1. Montrons que pour tout n de \mathbb{N}^* , $0 < u_n \le 2$

 $u_1 = 2$ donc la propriété est vraie pour n = 1

Montrons que la propriété est héréditaire c'est-à-dire que : pour tout n de \mathbb{N}^* , si $0 < u_n \le 2$ alors $0 < u_{n+1} \le 2$

$$\ln(u_{n+1}) = \frac{1}{2} \left[\ln(u_n) + \ln\left(\frac{n}{(n+1)^2}\right) \right] = \ln\sqrt{\frac{n}{(n+1)^2} u_n} \text{ donc } u_{n+1} = \sqrt{\frac{n}{(n+1)^2} u_n}$$

pour tout *n* de
$$\mathbb{N}^*$$
, $0 < n < n + 1$ donc $0 < \frac{n}{n+1} < 1$ donc $0 < \frac{n}{(n+1)^2} < \frac{1}{n+1} < 1$

$$0 < u_n \le 2 \text{ et } 0 < \frac{n}{(n+1)^2} < 1 \text{ donc } 0 < \frac{n}{(n+1)^2} u_n \le 2 \text{ donc } 0 < \sqrt{\frac{n}{(n+1)^2} u_n} \le \sqrt{2} \le 2$$

soit $0 < u_{n+1} \le 2$.

La propriété est héréditaire donc est vraie pour tout n de \mathbb{N}^*

La suite (u_n) est effectivement définie et tous ses termes sont inférieures ou égaux à 2.

2.
$$2 \ln(u_{n+1}) = \ln(u_n) + \ln n - 2 \ln(n+1) \operatorname{donc} 2 \ln(u_{n+1}) + 2 \ln(n+1) = \ln(u_n) + \ln n$$

$$2 \ln [(n+1) u_{n+1}] = \ln (n u_n) \text{ soit } 2 \ln v_{n+1} = \ln v_n \text{ donc } 2 w_{n+1} = w_n \text{ donc } w_{n+1} = \frac{1}{2} w_n$$

 (w_n) est une suite géométrique de premier terme $w_1 = \ln(v_1) = \ln(1 \times u_1) = \ln 2$ de raison $\frac{1}{2}$

3.
$$(w_n)$$
 est une suite géométrique de raison $\frac{1}{2}$ donc $w_n = \left(\frac{1}{2}\right)^{n-1} w_1$ et $-1 < \frac{1}{2} < 1$ donc $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^{n-1} = 0$ et $\lim_{n \to +\infty} w_n = 0$

$$w_n = \ln v_n$$
 donc $v_n = e^{w_n}$ or $\lim_{n \to +\infty} w_n = 0$ donc $\lim_{n \to +\infty} v_n = 1$

$$v_n = n \ u_n \text{ donc } u_n = \frac{1}{n} v_n; \lim_{n \to +\infty} \frac{1}{n} = 0 \text{ et } \lim_{n \to +\infty} v_n = 1 \text{ donc } \lim_{n \to +\infty} u_n = 0.$$